Halo-carbonyl complexes of platinum(II) and palladium(II)

 Fabio Marchetti ${ }^{\text {c }}$, Alessandra Merigo ${ }^{\text {a,1 }}$, Stefano Ramello ${ }^{\text {a,2 }}$
${ }^{\text {a }}$ Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, I-56126 Pisa, Italy
${ }^{\mathrm{b}}$ Institut für Anorganische Chemie der RWTH, Professor-Pirlet-Strasse 1, D-52074 Aachen, Germany
${ }^{\text {c }}$ Dipartimento di Ingegneria Chimica, dei Materiali, delle Materie Prime e Metallurgia, Università degli Studi 'La Sapienza', via del Castro Laurenziano 7, I-00161 Rome, Italy

Received 31 October 2000; accepted 12 November 2000

Abstract

The mononuclear and binuclear square-planar complexes of palladium(II) and platinum(II) cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$ (1), trans$\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}(\mathbf{2})$, cis $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}(3)$, and cis $-\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}(4)$, have been prepared by new synthetic procedures and some of them (2, 3, and 4) structurally characterised by X-ray diffraction methods. In the mononuclear platinum derivatives, cis $-\mathrm{PtX}_{2}(\mathrm{CO})_{2}$, $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, the molecules are arranged in columns, the $\mathrm{Pt} \cdots \mathrm{Pt}$ separation being $3.378 \AA(\mathrm{X}=\mathrm{Cl})$ or $3.65 \AA(\mathrm{av} ., \mathrm{X}=\mathrm{Br})$. The chloride-bridged dinuclear chloro-carbonyl complexes $\mathrm{M}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}, \mathrm{M}=\mathrm{Pd}, \mathrm{Pt}$, contain terminal chloride and carbonyl groups, trans for the platinum derivative 2, but, unexpectedly, cis for the corresponding palladium compound 4. Packing is based on intermolecular $\mathrm{C} \cdots \mathrm{X}$ or $\mathrm{Pt} \cdots \mathrm{Pt}$ interactions, as a function of the nature of the halide. The carbonylation at atmospheric pressure and room temperature of the tetrahalo complexes of platinum(II) in the presence of AlX_{3} as halide scavenger leads to $\left[\mathrm{PtX}_{3}(\mathrm{CO})\right]^{-}$or $\mathrm{PtX}_{2}(\mathrm{CO})_{2}$, depending on the $\mathrm{Pt} / \mathrm{AlX}_{3}$ molar ratio. The crystal and molecular structural data of $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PtBr}_{3}(\mathrm{CO})\right](5)$, show the anion to have substantially identical $\mathrm{Pt}-\mathrm{Br}$ bond distances, the CO ligand performing no trans influence. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Palladium; Platinum; Carbonyls; Structures

1. Introduction

Halo-carbonyl complexes of palladium(II) and platinum(II) have been studied extensively [1], for their unusual properties [2], for their importance in catalysis [3] and, last but not least, for historical reasons, cis$\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$ being the first metal carbonyl derivative ever reported in the literature [4]. On the other hand, several spectroscopic and structural features are still unexplored, mainly because of the experimental difficulties connected with the isolation and handling of these compounds. The neutral complexes cis $-\mathrm{PtX}_{2}(\mathrm{CO})_{2}$ [1a,c,j] and trans $-\mathrm{PtX}_{2}(\mathrm{CO})_{2}$ [1f, 2], $\mathrm{Pt}_{2} \mathrm{X}_{4}(\mathrm{CO})_{2}(\mathrm{X}=$

[^0]$\mathrm{Cl}, \mathrm{Br}, \mathrm{I})[1 \mathrm{a}, \mathrm{g}, 2]$ and $\mathrm{Pd}_{2} \mathrm{X}_{4}(\mathrm{CO})_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ [1d,e,h] are known and the reactions between the metal halides and carbon monoxide to give the corresponding carbonyl derivatives have been studied. Interestingly, the mononuclear carbonyl derivatives of platinum(II) are thermodynamically stable at room temperature, see Eqs. (1a) and (1b), with respect to the corresponding anhydrous metal halides and CO , as previously reported for $\mathrm{PtCl}_{2}[1 \mathrm{j}]$ and $\mathrm{PtI}_{2}[1 \mathrm{~g}]$ and observed in the course of this work for PtBr_{2}. The direct carbonylation of the three halides is therefore a viable process at room temperature. On the other hand, the mononuclear halocarbonyl derivatives of palladium(II) are unknown and the dinuclear ones $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ are in equilibrium with CO and $\mathrm{PdX}_{2}[1 \mathrm{e}, \mathrm{g}, 5]$, see Eq. (2); in the case of $\mathrm{X}=\mathrm{Cl}$, the hexanuclear $\beta-\mathrm{PdCl}_{2}$ [5] was established to be the crystalline phase involved in the equilibrium.

In spite of the considerable interest for palladium(II) and platinum(II) carbonyl derivatives in several fields, the preparative procedures to these compounds still
required further improvement and, moreover, structural information about unsubstituted halo-carbonyl derivatives of palladium and platinum is limited. As a matter of fact, the crystal and molecular structures of $\mathrm{Pt}_{2} \mathrm{I}_{4}(\mathrm{CO})_{2}[1 \mathrm{~g}]$ and cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}[1 \mathrm{j}]$ only have been published.

This paper reports new facile preparative methods to cis $-\mathrm{PtX}_{2}(\mathrm{CO})_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and to $\mathrm{M}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}(\mathrm{M}=$ $\mathrm{Pd}, \mathrm{Pt})$ by operating at atmospheric pressure of carbon monoxide and describes the crystal and molecular structures of cis $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}$, trans $-\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$ and cis$\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$.

$$
\begin{align*}
& \mathrm{PtX}_{2}+2 \mathrm{CO} \rightarrow \mathrm{PtX}_{2}(\mathrm{CO})_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}) \tag{1a}\\
& 2 \mathrm{PtI}_{2}+2 \mathrm{CO} \rightarrow \mathrm{Pt}_{2} \mathrm{I}_{4}(\mathrm{CO})_{2} \stackrel{\mathrm{Co}}{\rightleftarrows} 2 \mathrm{PtI}_{2}(\mathrm{CO})_{2} \tag{1b}\\
& 2 \mathrm{PdX}_{2}+2 \mathrm{CO} \rightleftarrows \mathrm{Pd}_{2} \mathrm{X}_{4}(\mathrm{CO})_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}) \tag{2}
\end{align*}
$$

2. Results and discussion

2.1. Halide substitutions on platinum precursors

The starting materials to bromocarbonyl platinum complexes were obtained by chloride/bromide substitution. For instance, the preparation of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtBr}_{4}\right]$ was accomplished by two alternative methods: (a) from aqueous $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ by halide substitution with KBr , see Eq. (3), and extracting the resulting $\left[\mathrm{Pt}_{2} \mathrm{Br}_{6}\right]^{2-}$ into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using $\left[\mathrm{NBu}_{4}\right] \mathrm{Br}$ as a phase-transfer agent; (b) in chlorinated solvents from $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]$ by reaction with $\mathrm{RBr}\left(\mathrm{R}=\mathrm{H},{ }^{t} \mathrm{Bu}\right)$.

Method (a) requires an excess of KBr . As a matter of fact, using a $\mathrm{Br}^{-} / \mathrm{Pt}$ molar ratio of 4.5 at room temperature, a mixture of the species $\left[\mathrm{PtCl}_{\mathrm{n}} \mathrm{Br}_{4-n}\right]^{2-}(n=0-$ 3) resulting from partial substitution was obtained, see Equilibria (3a)-(3d). The different complex anions can be detected by ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ [6] as follows: $\left[\mathrm{PtCl}_{3} \mathrm{Br}\right]^{2-}, \delta$ $-1846 \mathrm{ppm} ;\left[\mathrm{PtCl}_{2} \mathrm{Br}_{2}\right]^{2-}$, two resonances at $\delta-2087$ and -2098 ppm , due to the trans- and cis-isomer, respectively; $\left[\mathrm{PtClBr}_{3}\right]^{2-}, \delta-2366 \mathrm{ppm}$ and $\left[\mathrm{PtBr}_{4}\right]^{2-}$, $\delta-2662 \mathrm{ppm}$. On the basis of the relative peak intensities the prevailing species is $\left[\mathrm{PtClBr}_{3}\right]^{2-}$. For complete substitution, a saturated solution of KBr was used, corresponding to a nominal $\mathrm{Br}^{-} / \mathrm{Pt}$ molar ratio ≥ 20.

$$
\begin{align*}
& {\left[\mathrm{PtCl}_{4}\right]^{2-}+4 \mathrm{Br}^{-} \rightleftarrows\left[\mathrm{PtBr}_{4}\right]^{2-}+4 \mathrm{Cl}^{-}} \tag{3}\\
& {\left[\mathrm{PtCl}_{4}\right]^{2-}+\mathrm{Br}^{-} \rightleftarrows\left[\mathrm{PtBrCl}_{3}\right]^{2-}+\mathrm{Cl}^{-}} \tag{3a}\\
& {\left[\mathrm{PtBrCl}_{3}\right]^{2-}+\mathrm{Br}^{-} \rightleftarrows\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}+\mathrm{Cl}^{-}} \tag{3b}\\
& {\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}+\mathrm{Br}^{-} \rightleftarrows\left[\mathrm{PtBr}_{3} \mathrm{Cl}\right]^{2-}+\mathrm{Cl}^{-}} \tag{3c}\\
& {\left[\mathrm{PtBr}_{3} \mathrm{Cl}\right]^{2-}+\mathrm{Br}^{-} \rightleftarrows\left[\mathrm{PtBr}_{4}\right]^{2-}+\mathrm{Cl}^{-}} \tag{3d}
\end{align*}
$$

Thermodynamic data about substitution reactions of this type are not numerous: a paper by Leden and

Chatt [7] reports $\Delta G^{\circ}=-0.7 \mathrm{kcal} \mathrm{mol}^{-1}$ for reaction (4) in aqueous solution. Thus,
$\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{-}+\mathrm{Br}^{-} \rightleftarrows\left[\mathrm{PtCl}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{-}+\mathrm{Cl}^{-}$
the hydration free energy $[8,9]$ of $\mathrm{Cl}^{-}(-74.8 \mathrm{kcal}$ mol^{-1}) with respect to that of $\mathrm{Br}^{-}(-67.9 \mathrm{kcal}$ mol^{-1}) is mainly responsible for the observed exchange.

As far as point (b) is concerned, when the preparation of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtBr}_{4}\right]$ was carried out by treating $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]$ with ${ }^{t} \mathrm{BuBr}$ in CDCl_{3}, see Eq. (5), a mixture of the chloride and bromide derivatives was also obtained. By ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ and using a ${ }^{t} \mathrm{BuBr} / \mathrm{Pt}$ molar ratio of 5.5 it was established that at room temperature in 7 days the platinum complexes $\left[\mathrm{PtBr}_{3} \mathrm{Cl}\right]^{2-}\left(\begin{array}{ll}\delta & -2270 \mathrm{ppm}),\left[\mathrm{Pt}_{2} \mathrm{Br}_{6}\right]^{2-}\left(\begin{array}{ll}\delta & -2318\end{array}\right] .\end{array}\right.$ $\mathrm{ppm})$ and $\left[\mathrm{PtBr}_{4}\right]^{2-}(\delta-2559 \mathrm{ppm})$ are present in equilibrium with relative intensities 1:3:4. Using a large excess of ${ }^{t} \mathrm{BuBr}$ it was possible to convert this mixture to $\left[\mathrm{Pt}_{2} \mathrm{Br}_{6}\right]^{-2-}$ and $\left[\mathrm{PtBr}_{4}\right]^{2-}$.
$\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]+4^{t} \mathrm{BuBr} \rightarrow\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtBr}_{4}\right]+4^{t} \mathrm{BuCl}$

If $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]$ was treated with the stoichiometric amount of anhydrous HBr in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ a fast reaction was observed leading to $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2} \mathrm{Br}_{6}\right]$ exclusively, see Eq. (6).
$2\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]+8 \mathrm{HBr}$
$\rightarrow\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtBr}_{6}\right]+8 \mathrm{HCl}+2\left[\mathrm{NBu}_{4}\right] \mathrm{Br}$
The $\Delta G_{\mathrm{f}}^{\circ}$ of ${ }^{t} \mathrm{BuCl},{ }^{t} \mathrm{BuBr}, \mathrm{HCl}, \mathrm{HBr}$ are $-16.0,-7.9$, -22.8 and $-12.8{\mathrm{kcal} \mathrm{mol}^{-1} \text {, respectively [10]. The }}^{2}$ contributions to ΔG° due to the bromide exchange are $-6.9,-8.1$ and $-10.0 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{Br}_{\left({ }_{\text {aq. }}^{-}\right)}{ }^{t} \mathrm{BuBr}$ and HBr , respectively, thus justifying the observed exchange increasing in the sequence $\mathrm{Br}_{(\mathrm{aq.} .)}^{-}<{ }^{t} \mathrm{BuBr}<$ HBr .

2.2. Syntheses of platinum and palladium halocarbonyls

Relevant to the thermodynamics of these systems is the early preparation [4] of cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$: Schützenberger first converted [4b] a platinum sponge into a platinum chloride with chlorine at $250^{\circ} \mathrm{C}$, further reaction at lower temperature with CO giving the colourless cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$ and $\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$.

We had shown earlier that the dinuclear $\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$ undergoes carbonylation to cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$ through the intermediacy of trans $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$ [1f]. We have now established that PtCl_{2} suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or SOCl_{2} reacts at moderate rate with CO at room temperature and atmospheric pressure producing cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}(\mathbf{1})$, 1 mmol of platinum chloride being converted completely in about 3 days.

Compound 1 can be readily prepared also by carbonylation of $\left[\mathrm{PtCl}_{4}\right]^{2-}$ in the presence of AlCl_{3} as halide scavenger in chlorinated solvents, the tetrachloroplatinate(II) anion, as the tetrabutylammonium derivative, being obtained by solvent-extraction from aqueous solution, see Eq. (7).

$$
\begin{align*}
& {\left[\mathrm{PtCl}_{4}\right]_{(2 \mathrm{qa} .)}^{2-}+2 \mathrm{NBu}_{4} \mathrm{Cl}_{\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)}} \\
& \rightarrow\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]_{\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)}+2 \mathrm{Cl}_{\left(\mathrm{aq}_{2}\right)} \tag{7}\\
& {\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]+\mathrm{AlCl}_{3}+\mathrm{CO}} \\
& \rightarrow\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PtCl}_{3}(\mathrm{CO})\right]+\left[\mathrm{NBu}_{4}\right]\left[\mathrm{AlCl}_{4}\right] \tag{8}\\
& {\left[\mathrm{PtCl}_{4}\right]^{2-}+\mathrm{CO} \rightleftarrows\left[\mathrm{PtCl}_{3}(\mathrm{CO})^{-}+\mathrm{Cl}^{-}\right.} \tag{9}\\
& {\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PtCl}_{3}(\mathrm{CO})\right]^{-}+\mathrm{AlCl}_{3}+\mathrm{CO}} \\
& \rightarrow\left[\mathrm{NBu}_{4}\right]\left[\mathrm{AlCl}_{4}\right]+\text { trans }-\mathrm{PtCl}_{2}(\mathrm{CO})_{2} \tag{10a}\\
& \text { trans }-\mathrm{PtCl}_{2}\left(\mathrm{CO}_{2} \rightarrow \text { cis }-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right. \tag{10b}\\
& {\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PtCl}_{3}(\mathrm{CO})\right]+\mathrm{AlCl}_{3}} \\
& \rightarrow\left[\mathrm{NBu}_{4}\right]\left[\mathrm{AlCl}_{4}\right]+1 / 2 \text { trans }-\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2} \tag{11}
\end{align*}
$$

The reaction sequence was followed spectroscopically by IR and NMR, and by gas-volumetric measurements of the CO uptake. In order to avoid the intermediate precipitation of PtCl_{2}, which subsequently would react slowly with CO to yield $\mathbf{1}$, the carbonylation is best carried out by adding the first equivalent of AlCl_{3}, and allowing the system to form the monocarbonylated product of Eq. (8). It is interesting to note that $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]$ itself (i.e. even in the absence of AlCl_{3}) reacts with CO producing the $\left[\mathrm{PtCl}_{3}(\mathrm{CO})\right]^{-}$anion: in about 40 h at $21^{\circ} \mathrm{C}$, a $1.3 \times 10^{-2} \mathrm{M}$ solution of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]$ in sym- $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ absorbed CO up to a $\mathrm{CO} / \mathrm{Pt}$ molar ratio of 0.65 , as for Equilibrium 9.

Only after the addition of one equivalent of AlCl_{3}, the equilibrium was displaced to the right upon subtraction of Cl^{-}and further carbon monoxide was rapidly absorbed up to a $\mathrm{CO} / \mathrm{Pt}$ molar ratio of 1 . Under these conditions, the IR spectrum is characterized by a band at $2098 \mathrm{~cm}^{-1}$, due to $\left[\mathrm{PtCl}_{3}(\mathrm{CO})\right]^{-}$. The addition of a second equivalent of AlCl_{3} was followed by the rapid uptake of further CO forming trans- and then cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$, see reactions (10a) and (10b), as evidenced by the band at $2098 \mathrm{~cm}^{-1}$ being replaced by bands at $2150 \mathrm{~cm}^{-1}$ (trans-isomer) and 2138, 2178 cm^{-1} (cis-isomer). These experiments show that the trans-isomer is the primary product of the reaction, in agreement with the strong trans effect of ligated CO, followed by isomerization to 1. trans $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$ was also found to be the primary product of the carbonylation of the dinuclear trans $-\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}[1 \mathrm{f}]$: if the trans geometry of the dimer (as effectively found in the solid state, vide infra) is assumed, the strong trans effect of coordinated CO can be again considered to be responsible for this observation.

When the treatment with AlCl_{3} of the intermediate $\left[\mathrm{PtCl}_{3}(\mathrm{CO})\right]^{-}$was carried out under dinitrogen rather than under carbon monoxide, the dinuclear complex trans $-\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$ (2) was obtained exclusively, see Eq. (11). This methodology can therefore be directed towards the formation of the mononuclear- or the dinuclear compound simply by a change of the operating procedure in the final step.

The preparation of cis $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}(\mathbf{3})$ was performed from $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtBr}_{4}\right]$ and CO by using AlBr_{3} as bromide scavenger. The reaction, monitored by gasvolumetry and IR spectroscopy, shows similar features to the corresponding chloride system.
$\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtBr}_{4}\right]+\mathrm{CO}+\mathrm{AlBr}_{3}$
$\rightarrow\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PtBr}_{3}(\mathrm{CO})\right]+\left[\mathrm{NBu}_{4}\right]\left[\mathrm{AlBr}_{4}\right]$
$\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PtBr}_{3}(\mathrm{CO})\right]+\mathrm{CO}+\mathrm{AlBr}_{3}$
\rightarrow trans $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}+\left[\mathrm{NBu}_{4}\right]\left[\mathrm{AlBr}_{4}\right]$
trans $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2} \rightarrow$ cis $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}$
Compound $\mathbf{3}$ has been prepared alternatively by reacting 1 with $\mathrm{RBr}\left(\mathrm{R}={ }^{\dagger} \mathrm{Bu},{ }^{s} \mathrm{Bu}\right)$, see Eq. (15).
cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}+2 \mathrm{RBr} \rightarrow$ cis $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}+2 \mathrm{RCl}$
By using a slight excess of ${ }^{\dagger} \mathrm{BuBr}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent, the high-yielding reaction is over in a few minutes. When the reaction was carried out in CCl_{4}, the conversion, monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, was about 75% after 30 min . With ${ }^{s} \mathrm{BuBr}$ the reaction proceeded more slowly, a conversion of about 33% being observed in 48 h . These data suggest that the cleavage of the $\mathrm{Br}-\mathrm{C}$ bond is probably the rate-determining step.
Another method of preparation of cis $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}$ consists of treating a suspension of PtBr_{2} in a chlorinated hydrocarbon with CO at room temperature and atmospheric pressure (under these conditions the reaction is very slow), or under a moderate CO pressure (about 6 atm).
Dehalogenation of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{6}\right]^{2-}$ as the tetrabutylammonium derivative with AlCl_{3} in the presence of CO led to the dinuclear cis $-\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$ (4), see Eq. (16).
$\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pd}_{2} \mathrm{Cl}_{6}\right]+2 \mathrm{AlCl}_{3}+2 \mathrm{CO}$
$\rightarrow \mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}+2 \mathrm{NBu}_{4}\left[\mathrm{AlCl}_{4}\right]$
The IR data of the neutral platinum(II) and palladiu$m(I I)$ carbonyl derivatives are reported in Table 1, which can be used, with some precaution, for structural information. Although some of these compounds have been known for many years, structural information in the solid state is still rather limited. We therefore decided to carry out an extended study of their solidstate structures. As we shall see later, the IR spectra, suggesting a similar molecular arrangement for the dinuclear chloro-carbonyl derivatives of platinum(II)
and palladium(II), were misleading as these compounds were found to have different solid-state molecular structures.

2.3. Crystal structure determinations

The molecular structure of $\mathbf{2}$, trans $-\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$, is shown in Fig. 1. Bond distances and angles are listed in Table 2.

Table 1
IR spectra ($v_{\mathrm{CO}}, \mathrm{cm}^{-1}$) of some carbonyl derivatives of platinum(II) and palladium(II)

	Nujol	sym $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$	Heptane
cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}(\mathbf{1})$	$2187,2152^{\mathrm{a}}$	$2179,2136[1 \mathrm{c}]$	$2167,2120[1 \mathrm{~g}]$
trans $-\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$	$2146[1 \mathrm{~d}]$	$2138^{\mathrm{a}, \mathrm{c}}$	$2130[1 \mathrm{~g}]$
$\quad(\mathbf{2})$			
	$2146^{\mathrm{a}, \mathrm{b}}$		
cis $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}(\mathbf{3})$	$2167,2122^{\mathrm{a}}$	$2170,2130[1 \mathrm{~g}]$	$2156,2115[1 \mathrm{~g}]$
$\mathrm{Pt}_{2} \mathrm{Br}_{4}(\mathrm{CO})_{2}$	$2129^{\mathrm{a}, \mathrm{b}}$	$2127[1 \mathrm{~g}]$	$2122[1 \mathrm{~g}]$
cis $-\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$	(4) $2167[1 \mathrm{~d}]$	$2166^{\mathrm{c}}[1 \mathrm{~h}]$	$21599^{\mathrm{d}}[1 \mathrm{~d}]$

${ }^{\text {a }}$ This work.
${ }^{\mathrm{b}}$ PCTFE (polychlorotrifluoroethylene).
${ }^{\mathrm{c}} \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
${ }^{\mathrm{d}}$ Cyclohexane.

Fig. 1. The molecular structure of trans $-\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$ (2). The apex in the labels have the same meaning as in Table 2. Thermal ellipsoids are at 30% probability.

Table 2
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for trans $-\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}(\mathbf{2})^{\mathrm{a}}$

$\mathrm{Pt}-\mathrm{C}$	$1.86(5)$	$\mathrm{Pt}-\mathrm{Cl}\left(1^{\prime}\right)$	$2.396(12)$
$\mathrm{Pt}-\mathrm{Cl}(2)$	$2.127(8)$	$\mathrm{C}-\mathrm{O}$	$1.08(5)$
$\mathrm{Pt}-\mathrm{Cl}(1)$	$2.287(13)$		
$\mathrm{C}-\mathrm{Pt}-\mathrm{Cl}(2)$	$89.4(17)$	$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{Cl}\left(1^{\prime}\right)$	$173.7(7)$
$\mathrm{C}-\mathrm{Pt}-\mathrm{Cl}(1)$	$176.6(18)$	$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}\left(1^{\prime}\right)$	$85.2(2)$
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{Cl}(1)$	$93.8(4)$	$\mathrm{Pt}-\mathrm{Cl}(1)-\mathrm{Pt}^{\prime}$	$94.5(2)$
$\mathrm{C}-\mathrm{Pt}-\mathrm{Cl}\left(1^{\prime}\right)$	$91.5(18)$	$\mathrm{O}-\mathrm{C}-\mathrm{Pt}$	$176(4)$

[^1]

Fig. 2. The molecular structure of the two independent molecules in the crystal of cis $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}$ (3). Thermal ellipsoids are at 30% probability.

Table 3
Main bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of $c i s-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}(\mathbf{3})$

$\mathrm{Pt}(1)-\mathrm{C}(1)$	$1.86(4)$	$\mathrm{Pt}(2)-\mathrm{C}(4)$	$1.88(3)$
$\mathrm{Pt}(1)-\mathrm{C}(2)$	$1.96(6)$	$\mathrm{Pt}(2)-\mathrm{C}(3)$	$1.89(5)$
$\mathrm{Pt}(1)-\mathrm{Br}(1)$	$2.411(4)$	$\mathrm{Pt}(2)-\mathrm{Br}(3)$	$2.416(4)$
$\mathrm{Pt}(1)-\mathrm{Br}(2)$	$2.417(4)$	$\mathrm{Pt}(2)-\mathrm{Br}(4)$	$2.417(4)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.12(4)$	$\mathrm{C}(3)-\mathrm{O}(3)$	$1.17(5)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.06(5)$	$\mathrm{C}(4)-\mathrm{O}(4)$	$1.12(4)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}(2)$	$93.8(17)$	$\mathrm{C}(4)-\mathrm{Pt}(2)-\mathrm{C}(3)$	$95.0(14)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{Br}(1)$	$178.3(12)$	$\mathrm{C}(4)-\mathrm{Pt}(2)-\mathrm{Br}(4)$	$176.0(9)$
$\mathrm{C}(2)-\mathrm{Pt}(1)-\mathrm{Br}(1)$	$87.7(12)$	$\mathrm{C}(3)-\mathrm{Pt}(2)-\mathrm{Br}(4)$	$89.0(10)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{Br}(2)$	$87.1(12)$	$\mathrm{C}(4)-\mathrm{Pt}(2)-\mathrm{Br}(3)$	$85.0(9)$
$\mathrm{C}(2)-\mathrm{Pt}(1)-\mathrm{Br}(2)$	$179.0(12)$	$\mathrm{C}(3)-\mathrm{Pt}(2)-\mathrm{Br}(3)$	$178.8(9)$
$\mathrm{Br}(1)-\mathrm{Pt}(1)-\mathrm{Br}(2)$	$91.35(17)$	$\mathrm{Br}(3)-\mathrm{Pt}(2)-\mathrm{Br}(4)$	$91.08(14)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Pt}(1)$	$177(4)$	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{Pt}(2)$	$176(3)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Pt}(1)$	$178(4)$	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{Pt}(2)$	$179(3)$

Compound 2 is constituted by two $\left\{\mathrm{PtCl}_{3}(\mathrm{CO})\right\}$ squares joined by two bridging chlorides. The squares deviate somewhat from coplanarity, the point symmetry of the molecule being C_{2}, rather than $C_{2 \mathrm{~h}}$. For each $\left\{\mathrm{PtCl}_{3}(\mathrm{CO})\right\}$ system, the $\mathrm{Pt}, \mathrm{Cl}(1), \mathrm{Cl}\left(1^{\prime}\right), \mathrm{C}$ and O atoms are coplanar within $0.029 \AA$, while the $\mathrm{Cl}(2)$ atom is $0.228 \AA$ out of this plane. Moreover, the dihedral angle at the bridging chlorides Pt $\mathrm{Cl}(1) \cdots \mathrm{Cl}\left(1^{\prime}\right)-\mathrm{Pt}^{\prime}$ is 171.8° and the $\mathrm{Pt}-\mathrm{Cl}(1)$ and $\mathrm{Pt}-$ $\mathrm{Cl}\left(1^{\prime}\right)$ distances differ by $0.11 \AA$. The $\mathrm{Pt}-\mathrm{Cl}_{\mathrm{t}}$ $\left(\mathrm{Cl}_{\mathrm{t}}=\right.$ terminal chloride $)$ and $\mathrm{Pt}-\mathrm{CO}$ distances are similar to those observed in cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$, whereas the $\mathrm{Pt}-\mathrm{Cl}_{\mathrm{b}}\left(\mathrm{Cl}_{\mathrm{b}}=\right.$ bridging chloride $)$ distances are, as expected, longer by 0.16 and $0.27 \AA$, respectively. The molecules are stacked on each other, with completely eclipsed atoms, the separation being $3.525 \AA$ (c translation). Different from 3 (vide infra) and cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$ [1j], where the shortest contacts are between the halide and the carbonyl carbon, the shortest contact is between the platinum atoms.
The molecular structure of cis $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}, 3$, is shown in Fig. 2. Bond distances and angles are listed in Table 3.

The molecular structure consists of a square-planar disposition of two bromines and two carbonyl groups around platinum.

The geometry is similar to that of cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}[1 \mathrm{j}]$. However, two independent molecules of cis $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}$ are present in the asymmetric unit. As in the crystal of cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$, the molecules are stacked with the bromide facing the carbonyl carbon of the nearest molecules, the $\mathrm{C} \cdots \mathrm{Br}$ distances being: $\mathrm{C}(1) \cdots \mathrm{Br}(1)$, 3.599; $\quad \mathrm{C}(2) \cdots \operatorname{Br}(2), \quad 3.581 ; \quad \mathrm{C}(3) \cdots \operatorname{Br}(3), \quad 3.603$; $\mathrm{C}(4) \cdots \operatorname{Br}(4), 3.665 \AA$. The two independent molecules form stacks along the \mathbf{a} and \mathbf{b} directions, respectively. The $\mathrm{Pt} \cdots \mathrm{Pt}$ distances within the stacks are 3.615 and $3.656 \AA$ and 3.640 and $3.702 \AA$, respectively, whereas the $\mathrm{Pt} \cdots \mathrm{Pt} \cdots \mathrm{Pt}$ angles are 157 and 170°, respectively. The wider stacking of the bromide derivative with
respect to cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$ is due to the larger size of the bromide.

The molecular structure of $\mathbf{4}$, cis $-\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$, is shown in Fig. 3 and Table 4 lists the bond distances and angles.

In 4 the CO groups are in cis positions. The two $\{\mathrm{Pd}$ $\left.\mathrm{Cl}_{3}(\mathrm{CO})\right\}$ squares are almost exactly planar (maximum deviation, $0.019 \AA$) and share the $\mathrm{Cl}(2) \cdots \mathrm{Cl}(3)$ edge at a dihedral angle of 174.9°. The inversion centres present in the crystal structure produce pairs of molecules, whose centroids are $3.75 \AA$ apart, with the carbonyl groups of the two molecules within each pair pointing out in opposite directions. The $\mathrm{Pd} \cdots \mathrm{Pd}$ non-bonding contact within each pair is $3.624 \AA$. The shortest nonbonding contacts are, however, between atoms belonging to molecules of different pairs, namely $3.388 \AA$ for $\mathrm{Cl}(4) \cdots \mathrm{Pd}\left(2^{\prime}\right), 3.262 \AA$ for $\mathrm{Cl}(1) \cdots \mathrm{O}\left(1^{\prime \prime}\right)$ and $3.358 \AA$ for $\mathrm{Cl}(1) \cdots \mathrm{C}\left(1^{\prime \prime \prime}\right)\left({ }^{\prime}=-1 / 2-x,-1 / 2+y, 1 / 2-z ;^{\prime \prime}=x\right.$, $\left.-1+y, z ;^{\prime \prime \prime}=1 / 2-x,-1 / 2+y, 1 / 2-z\right)$.

The expected square-planar coordination around platinum(II) was found for the ionic compound 5 $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PtBr}_{3}(\mathrm{CO})\right]$. The structural parameters $[\mathrm{C}(1)-\mathrm{Pt}$, 1.85(2), $\mathrm{Br}(1)-\mathrm{Pt}, 2.427(2) ; \mathrm{Br}(2)-\mathrm{Pt}, 2.423(2) ; \mathrm{Br}(3)-$ $\left.\mathrm{Pt}, 2.428 \AA ; \mathrm{C}(1)-\mathrm{Pt}-\operatorname{Br}(2) 177.4^{\circ}\right]$ correspond to practically identical $\mathrm{Pt}-\mathrm{Br}$ distances, in agreement with the earlier findings for the corresponding chloride derivative $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PtCl}_{3}(\mathrm{CO})\right][11]$, which has a $\mathrm{Pt}-\mathrm{Cl}$ distance trans to the CO ligand of 2.289(3) \AA. In other words, as noted earlier also for $\left[\mathrm{NBu}_{4}\right][\operatorname{PdX} 3(\mathrm{CO})][1 \mathrm{~h}], \mathrm{X}=\mathrm{Cl}$, Br , the CO ligand has no appreciable trans influence in

Fig. 3. The molecular structure of cis $-\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$ (4). Thermal ellipsoids are at 30% probability.

Table 4
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of cis $-\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}(4)$

$\mathrm{Pd}(1)-\mathrm{C}(1)$	$1.891(13)$	$\mathrm{Pd}(2)-\mathrm{C}(2)$	$1.879(15)$
$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.260(3)$	$\mathrm{Pd}(2)-\mathrm{Cl}(4)$	$2.260(3)$
$\mathrm{Pd}(1)-\mathrm{Cl}(3)$	$2.327(3)$	$\mathrm{Pd}(2)-\mathrm{Cl}(3)$	$2.328(3)$
$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$2.331(3)$	$\mathrm{Pd}(2)-\mathrm{Cl}(2)$	$2.336(3)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.105(13)$	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.112(14)$
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$86.1(3)$	$\mathrm{C}(2)-\mathrm{Pd}(2)-\mathrm{Cl}(4)$	$87.0(4)$
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(3)$	$177.6(3)$	$\mathrm{C}(2)-\mathrm{Pd}(2)-\mathrm{Cl}(3)$	$178.5(4)$
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(3)$	$91.55(12)$	$\mathrm{Cl}(4)-\mathrm{Pd}(2)-\mathrm{Cl}(3)$	$91.62(12)$
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$95.5(3)$	$\mathrm{C}(2)-\mathrm{Pd}(2)-\mathrm{Cl}(2)$	$94.7(4)$
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$177.93(11)$	$\mathrm{Cl}(4)-\mathrm{Pd}(2)-\mathrm{Cl}(2)$	$178.18(13)$
$\mathrm{Cl}(3)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$86.84(11)$	$\mathrm{Cl}(3)-\mathrm{Pd}(2)-\mathrm{Cl}(2)$	$86.70(11)$
$\mathrm{Pd}(1)-\mathrm{Cl}(2)-\mathrm{Pd}(2)$	$92.91(11)$	$\mathrm{Pd}(1)-\mathrm{Cl}(3)-\mathrm{Pd}(2)$	$93.23(11)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Pd}(1)$	$177.4(11)$	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Pd}(2)$	$178.4(11)$

these three cases. Moreover, the $\mathrm{C}(1)-\mathrm{Pd}$ distance is $1.87(1) \AA$, i.e. practically the same as the $\mathrm{C}-\mathrm{Pt}$ distance of the corresponding platinum complex, in agreement with the substantially identical ionic radii of platinu$\mathrm{m}(\mathrm{II})(0.60 \AA)$ and palladium(II) ($0.64 \AA$) [12].

3. Conclusions

This paper, which is believed to be relevant for people interested in carbonyl derivatives of platinum(II) and palladium(II), has produced some new observations.

1. The dinuclear platinum(II) and palladium(II) chloro-carbonyl complexes $\mathrm{M}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$ are not isostructural and have a different arrangement of the ligands. In fact, while the platinum(II) derivative 2 has the trans structure, the palladium(II) compound 4 has been shown to prefer a cis arrangement of the ligands in the solid state. This was unexpected in view of the similarity of the IR spectra, see Table 1 , in Nujol as medium or in solution $\left(\operatorname{sym}-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}\right.$ or heptane), once the shift of the CO stretching vibrations towards high wavenumbers for palladiu$\mathrm{m}(\mathrm{II})$, vide infra, is taken into consideration. It is interesting to note that the cis structure 4 was considered as a possibility for the uncharged chlorocarbonyl of palladium(II) [13], although a less likely one on the basis of the 'uneven distribution of electron density in the molecule and uneven strengths of bonds linking similar atoms'. The presence of only one v_{CO} for the palladium(II) derivative was taken initially as evidence [1d,h] for a trans arrangement. This structural assignment must now be revised. Assuming that the cis structure persists in solution too, the IR observation is to be attributed to the fact that the two fragments of the molecule are not vibrationally coupled.
2. The IR data of Table 1 confirm the earlier notion [1d,h] that palladium(II) carbonyl derivatives have $v_{\mathrm{CO}} \mathrm{S}$ higher than those of the corresponding platinum (II) derivatives. This has been attributed [2] to the presumably negligible π-back bond component within the $\mathrm{Pd}-\mathrm{CO}$ bond. Other interpretations of the experimental observations concerning the high $v_{\mathrm{CO}} \mathrm{S}$ for carbonyl derivatives of late transition metals $[\mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II}), \mathrm{Ag}(\mathrm{I}), \mathrm{Au}(\mathrm{I})]$ in their usual oxidation states, both neutral and cationic, have been proposed [14a,b]. However, we still prefer to maintain the earlier suggestion [2], corroborated by further experimental data by Strauss and coworkers [15a,b] and by Aubke and coworkers [15c-e] that π-backbonding should not be heavily involved in a satisfactory description of these metal complexes.
3. In the $\left[\mathrm{MX}_{3}(\mathrm{CO})\right]^{-}$anions of platinum(II) and palladium(II), for which three structural determina-
tions are now available $[1 \mathrm{~h}, 11]$ with the same countercation, no elongation of the halide ligand trans to the carbonyl group has been observed.
4. In conjunction with the structural data reported earlier for trans $-\mathrm{Pt}_{2} \mathrm{I}_{4}(\mathrm{CO})_{2}[1 \mathrm{~g}]$ this paper shows that within the dinuclear units, the non-bonding $\mathrm{P}+\cdots \mathrm{Pt}$ distance increases from $3.441 \AA$ in trans$\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$ (2), to $3.846 \AA$ in trans $-\mathrm{Pt}_{2} \mathrm{I}_{4}(\mathrm{CO})_{2}$. It is interesting to note that the intramolecular $\mathrm{Pd} \cdots \mathrm{Pd}$ distance in the dinuclear cis $-\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}(4)$ is 3.383 \AA, i.e. similar to the corresponding contact in the platinum(II) complex, in agreement again with the similar ionic radii, as noted above. The intramolecular nonbonding distance ($3.525 \AA$) is comparable to the interlayer $\mathrm{Pt} \cdots \mathrm{Pt}$ distance of trans $-\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$.
5. In view of the high reactivity of these systems of platinum(II) and palladium(II) towards nucleophilic reagents, some of the compounds reported in this paper have been [16] and will be further used for the chemical deposition under mild conditions of the corresponding metals on metal oxide surfaces.

4. Experimental

4.1. General

All manipulations were performed under an atmosphere of prepurified dry dinitrogen or carbon monoxide. Solvents were carefully dried by conventional methods prior to use. IR spectra were recorded with Perkin-Elmer spectrophotometers (mod. 283 B or 1725X FT-IR) in solution or as Nujol or polychlorotrifluoroethylene (PCTFE) mulls prepared under rigorous exclusion of moisture. ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-,{ }^{31} \mathrm{P}$ - and ${ }^{195} \mathrm{Pt}$-NMR spectra were recorded with a Varian Gemini 200 BB spectrometer, chemical shifts being reported in ppm versus SiMe_{4} for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, versus $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{PtCl}_{6}$ in $\mathrm{D}_{2} \mathrm{O}$ for ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$, respectively.

Commercial aqueous solutions of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ (Chimet S.p.A., Badia al Pino, Arezzo, Italy) were used. The halides AlCl_{3} and AlBr_{3} (Aldrich) were sublimed in vacuo and stored under N_{2}, while cis $-\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$ was prepared according to the literature [1d,e] or from $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pd}_{2} \mathrm{Cl}_{6}\right]$, as described below.

4.2. $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]$ by solvent extraction

An aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.154 \mathrm{M}, 90 \mathrm{ml}$, 13.9 mmol) was shaken in a separatory funnel with a solution of $\mathrm{NBu}_{4} \mathrm{Cl}(7.72 \mathrm{~g}, 27.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(130$ $\mathrm{ml})$. The organic layer immediately became red, while the aqueous solution discoloured. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was separated, concentrated to a small volume by gentle warming at atmospheric pressure and then evaporated to dryness in vacuo. The red product was dried
over $\mathrm{P}_{4} \mathrm{O}_{10}$ in vacuo for $3 \mathrm{~h}(9.35 \mathrm{~g}, 81.8 \%$ yield $)$. Anal. Calc for $\mathrm{C}_{32} \mathrm{H}_{72} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{P}$: Cl, 17.2; Pt, 23.7. Found: Cl, 16.9; $\mathrm{Pt}, 23.1 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 3.65(2 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{NCH}_{2}\right) ; 1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 1.56(2 \mathrm{H}$, sext, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); $0.99\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$ ppm. ${ }^{195} \mathrm{Pt}$-NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-1574 \mathrm{ppm}$.

4.3. Halide exchange

4.3.1. From aqueous $K_{2}\left[\mathrm{PtCl}_{4}\right]$

An aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.154 \mathrm{M}, 17 \mathrm{ml}$, 2.62 mmol) was saturated with KBr . The orange solution became red-brown and was shaken with a solution of $\mathrm{NBu}_{4} \mathrm{Br}(1.71 \mathrm{~g}, 5.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ in a separatory funnel. The organic layer immediately became red-brown, and the aqueous phase discoloured. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was separated and evaporated to dryness under reduced pressure. The oily residue was treated in vacuo at $50^{\circ} \mathrm{C}$ for 2 h . The product thus obtained was dried over $\mathrm{P}_{4} \mathrm{O}_{10}$ for 3 h in vacuo $(2.11 \mathrm{~g}$, 80.6% yield). Anal. Calc for $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtBr}_{4}\right]$, $\mathrm{C}_{32} \mathrm{H}_{72} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{Pt}: \mathrm{Br}, 32.0$ P Pt, 19.5. Found: Br, 32.5; Pt, 18.9%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 3.63(2 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{NCH}_{2}\right) ; 1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 1.54(2 \mathrm{H}$, sext, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); $0.98\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{195} \mathrm{Pt}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-2560 \mathrm{ppm}$. After 15 d at room temperature (r.t.) a new resonance of low intensity at δ -2318 ppm was detected due to $\left[\mathrm{Pt}_{2} \mathrm{Br}_{6}\right]^{2-}$ (vide infra).
In an experiment, $\mathrm{KBr}(49.5 \mathrm{mg}, 0.416 \mathrm{mmol})$ and 1.1 ml of water were added to 0.720 g of an aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}\left(2.47 \%\right.$ platinum; $1.78 \times 10^{-2} \mathrm{~g}$ of Pt; $9.11 \times 10^{-2} \mathrm{~mol}$). The resulting solution was transferred into a NMR tube containing 0.3 ml of $\mathrm{D}_{2} \mathrm{O}$ for ${ }^{195} \mathrm{Pt}$-NMR monitoring. After 18 h the spectrum showed resonances at $-1846\left\{\left[\mathrm{PtBrCl}_{3}\right]^{2-}\right\},-2087$ and -2098 \{trans- and cis $\left[\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}\right\},-2366$ $\left\{\left[\mathrm{PtBr}_{3} \mathrm{Cl}\right]^{2-}\right\}$ and $-2662 \mathrm{ppm}\left\{\left[\mathrm{PtBr}_{4}\right]^{2-}\right\}$, the most intense peak being that at -2366 ppm . Spectra recorded after several days showed no change.
In another experiment, $\mathrm{K}_{2} \mathrm{PtCl}_{4}\left(9.20 \times 10^{-2} \mathrm{~mol}\right)$ was treated with $\mathrm{KBr}(77.5 \mathrm{mg}, 0.651 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}+$ $\mathrm{D}_{2} \mathrm{O}(0.6 \mathrm{ml}+0.3 \mathrm{ml})$. After 90 min , a ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum showed resonances at $-1625\left\{\left[\mathrm{PtCl}_{4}\right]^{2-}\right\}$, $-1846\left\{\left[\mathrm{PtBrCl}_{3}\right]^{2-}\right\},-2087\left\{\right.$ trans $\left.-\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}\right\}$, $-2366\left\{\left[\mathrm{PtBr}_{3} \mathrm{Cl}\right]^{2-}\right\}$ and $-2662 \mathrm{ppm}\left\{\left[\mathrm{PtBr}_{4}\right]^{2-}\right\}$, the most intense being the first one. After 24 h , the last two resonances only were observed. After addition of more $\mathrm{KBr}(138 \mathrm{mg}, 1.16 \mathrm{mmol})$, a spectrum recorded 18 h later showed the resonances due to $\left[\mathrm{PtBr}_{3} \mathrm{Cl}\right]^{2-}$ and $\left[\mathrm{PtBr}_{4}\right]^{2-}$, the latter being predominant.

4.3.2. From $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]$ in CDCl_{3}

4.3.2.1. With ${ }^{t} \mathrm{BuBr}$. A solution in $\mathrm{CDCl}_{3}(1 \mathrm{ml})$ of ${ }^{t} \operatorname{BuBr}\left(0.1 \mathrm{ml}, d=1.189 \mathrm{~g} \mathrm{ml}^{-1}, 0.868 \mathrm{mmol}\right)$ and $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right](129 \mathrm{mg}, 0.157 \mathrm{mmol})$ was prepared in a

NMR tube. After 20 h a ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum of the solution showed three peaks at $-2004\left\{\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}\right\}$, $-2270\left\{\left[\mathrm{PtBr}_{3} \mathrm{Cl}\right]^{2-}\right\}$, and $-2560 \mathrm{ppm}\left\{\left[\mathrm{PtBr}_{4}\right]^{2-}\right\}$. After 48 h the spectrum showed a new peak of low intensity at $-2318 \mathrm{ppm}\left\{\left[\mathrm{Pt}_{2} \mathrm{Br}_{6}\right]^{2-}\right\}$. After 72 h the intensities of the peaks at -2004 and -2270 ppm decreased, while increased the peak at -2318 ppm . After 6 days at r.t. and three days at $40^{\circ} \mathrm{C}$, the intensity of the peaks at -2318 and -2560 ppm increased. Addition of an excess of ${ }^{t} \mathrm{BuBr}(1.00 \mathrm{ml}, 8.68 \mathrm{mmol})$ caused the disappearance of the lower field resonances, and the peaks at -2318 and -2560 ppm had an intensity ratio of 1.25 .
4.3.2.2. With HBr . In a 100 ml flask, equipped with a silicone-rubber stopper, $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(20 \mathrm{ml})$ and $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right](0.420 \mathrm{~g}, 0.511 \mathrm{mmol})$ were introduced under N_{2}. After evacuation, gaseous $\mathrm{HBr}(50 \mathrm{ml}$, about 2 mmol) was added through the plug by syringe. A ${ }^{195} \mathrm{Pt}$-NMR spectrum recorded after 15 h showed the peak at -2297 ppm due to $\left[\mathrm{Pt}_{2} \mathrm{Br}_{6}\right]^{2-}$ only. The assignment was confirmed in the following manner. To a suspension of $\mathrm{PtBr}_{2}(0.240 \mathrm{~g}, 0.676 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{ml}) \mathrm{NBu}_{4} \mathrm{Br}(0.230 \mathrm{~g}, 0.713 \mathrm{mmol})$ was added, giving a red-brown solution. The solid residue obtained by evaporating the solvent under reduced pressure was collected $(0.37 \mathrm{~g}, 77 \%$ yield). Anal. Calc. for $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2} \mathrm{Br}_{6}\right], \mathrm{C}_{32} \mathrm{H}_{72} \mathrm{Br}_{6} \mathrm{~N}_{2} \mathrm{Pt}_{2}$: $\mathrm{Br}, 35.4 ; \mathrm{Pt}$, 28.8 . Found: $\mathrm{Br}, 34.6 ; \mathrm{Pt}, 27.9 \%$. ${ }^{195} \mathrm{Pt}-\mathrm{NMR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \delta$ - 2297 ppm.

4.4. $\left[N B u_{4}\right]_{2}\left[\mathrm{Pd}_{2} \mathrm{Cl}_{6}\right]$

An aqueous acidic (for hydrochloric acid) solution $(33 \mathrm{ml})$ of $\mathrm{PdCl}_{2}(4.70 \mathrm{mmol})$ was treated in a separatory funnel with a solution of $\mathrm{NBu}_{4} \mathrm{Cl}(1.303 \mathrm{~g}, 4.69 \mathrm{mmol})$ in sym $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}(50 \mathrm{ml})$. The aqueous layer immediately discoloured and the organic layer became red-orange: the latter one was transferred to a flask and evaporated to dryness under reduced pressure. The red residue was treated with heptane (30 ml). The suspension was filtered and the solid dried in vacuo (90% yield). Anal. Calc. for $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pd}_{2} \mathrm{Cl}_{6}\right], \mathrm{C}_{32} \mathrm{H}_{72} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 42.2 ; \mathrm{H}$, $8.0 ;$ N, 3.1. Found: C, 42.0; H, 7.9; N, 2.6\%.
4.5. $\mathrm{cis}-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}(1)$

4.5.1. From $\left[\mathrm{NBu}_{4}\right]_{2} \mathrm{PtCl}_{4}$

Solid $\left[\mathrm{NBu}_{4}\right]_{2} \mathrm{PtCl}_{4}$, obtained from an aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(6.70 \mathrm{mmol})$ as for the above description, was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. The solution was saturated with CO and $0.850 \mathrm{~g}(6.37 \mathrm{mmol})$ of AlCl_{3} were added. After stirring for 20 h , an IR spectrum showed an intense band at $2098 \mathrm{~cm}^{-1}$ due to $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PtCl}_{3}(\mathrm{CO})\right]$. A second equivalent of $\mathrm{AlCl}_{3}(0.900$ $\mathrm{g}, 6.75 \mathrm{mmol}$) was introduced and the mixture was
stirred under CO for 6 h at atmospheric pressure at r.t. [carbonyl bands at 2178 and $2138 \mathrm{~cm}^{-1}$ due to cis$\left.\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]$. The suspension was filtered and the filtrate was evaporated to dryness. The colourless residue was extracted with $\mathrm{CCl}_{4}(100 \mathrm{ml})$ in a Soxhlet for 5 h . The analytically and spectroscopically pure product was recovered by filtration of the extract and dried in vacuo ($1.28 \mathrm{~g}, 60.6 \%$ yield).

In a gas-volumetric experiment carried out in 1,2dichloroethane $(20 \mathrm{ml})$ at $21.4^{\circ} \mathrm{C}, 213 \mathrm{mg}(0.259 \mathrm{mmol})$ of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{4}\right]$ absorbed CO up to a $\mathrm{CO} / \mathrm{Pt}$ molar ratio of 0.65 in 40 h . By addition of $\mathrm{AlCl}_{3}(37.5 \mathrm{mg}$, 0.281 mmol) further CO was absorbed in 2 h (final $\mathrm{CO} / \mathrm{Pt}$ molar ratio of 0.97). Additional AlCl_{3} (44.8 mg , 0.336 mmol) gave new CO uptake (1.5 h) corresponding to a total $\mathrm{CO} / \mathrm{Pt}$ molar ratio of 1.90 . The IR spectrum of the solution showed bands at 2178 and $2138 \mathrm{~cm}^{-1}$ $\left[\right.$ cis $\left.-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]$ and at $2150 \mathrm{~cm}^{-1}\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]$. After 15 h under CO , only the bands due to the cis-isomer were observed.

4.5.2. From PtCl_{2}

A suspension of $\mathrm{PtCl}_{2}(280 \mathrm{mg}, 1.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 ml) was stirred under CO at r.t. for 3 days. The resulting colourless solution, which showed the IR bands of cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$, was added of heptane (100 ml) and stored at $-30^{\circ} \mathrm{C}$ for 3 days. The product was collected by filtration and dried in vacuo ($284 \mathrm{mg}, 84 \%$ yield). Analogous results were obtained by operating in SOCl_{2}. In a gas-volumetric experiment carried out in sym $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}(25 \mathrm{ml}) 215 \mathrm{mg}(0.81 \mathrm{mmol})$ of PtCl_{2} absorbed CO at $18.6^{\circ} \mathrm{C}$ up to a $\mathrm{CO} / \mathrm{Pt}$ molar ratio of 1.92 in 3 days.

4.6. trans $-\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$ (2)

By operating under CO , solid $\left[\mathrm{NBu}_{4}\right]_{2} \mathrm{PtCl}_{4}$ obtained from an aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(6.60 \mathrm{mmol})$ was dissolved in $1,2-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(50 \mathrm{ml})$, and the resulting solution was added of $0.890 \mathrm{~g}(6.67 \mathrm{mmol})$ of AlCl_{3}. After 18 h stirring, an IR spectrum showed the band at $2098 \mathrm{~cm}^{-1}$ due to $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PtCl}_{3}(\mathrm{CO})\right]$. The solution was degassed and saturated with N_{2}. A second equivalent of $\mathrm{AlCl}_{3}(0.88 \mathrm{~g}, 6.60 \mathrm{mmol})$ was added and the solution turned orange. After 1 h , an IR spectrum showed the band at $2138 \mathrm{~cm}^{-1}$ due to trans $-\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$. After filtration, the solution was stored at $0^{\circ} \mathrm{C}$ for 2 days. Orange crystals, suitable for an X-ray diffraction study, separated out, which were filtered and dried in vacuo ($0.69 \mathrm{~g}, 35.6 \%$ yield).
4.7. cis- $\mathrm{PtBr}_{2}(\mathrm{CO})_{2}$ (3)

4.7.1. From $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtBr}_{4}\right]$

Compound 3 was obtained from $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtBr}_{4}\right]$ and CO , using AlBr_{3} as halide scavenger in two separate
steps (22.5% yield after extraction with CCl_{4}). In a gas-volumetric experiment, the CO uptake by $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtBr}_{4}\right]$ in dichloroethane at $16.6^{\circ} \mathrm{C}$ was measured, corresponding to a $\mathrm{CO} / \mathrm{Pt}$ molar ratio of 0.99 (in 2 h) and 1.9 (in 0.5 h , after addition of the second equivalent of AlBr_{3}). The IR spectrum of the solution showed a band at $2142 \mathrm{~cm}^{-1}$ due to trans $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}$. After 24 h under CO, this band had disappeared, being substituted by bands at 2170 and $2130 \mathrm{~cm}^{-1}$ of the cis-isomer.

4.7.2. From cis- $\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$

To a suspension of cis $-\mathrm{PtCl}_{2}(\mathrm{CO})_{2}(0.580 \mathrm{~g}, 1.80$ $\mathrm{mmol})$ in $\mathrm{CCl}_{4}(10 \mathrm{ml}),{ }^{t} \operatorname{BuBr}(0.50 \mathrm{ml}, 4.34 \mathrm{mmol})$ was added. After 30 min a ${ }^{1} \mathrm{H}$-NMR spectrum showed the peaks at $1.62 \mathrm{ppm}\left({ }^{(} \mathrm{BuBr}\right)$ and at $1.45 \mathrm{ppm}\left({ }^{(} \mathrm{BuCl}\right)$ in the 1:2.6 ratio. After 24 h stirring the suspension was filtered and the solid was dried in vacuo ($0.46 \mathrm{~g}, 62 \%$ yield). Found: $\mathrm{Br}, 38.6$; Pt , 46.6. $\mathrm{C}_{2} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Pt}$ requires: $\mathrm{Br}, 38.9$; Pt, 47.5%. IR (Nujol): 2167 and $2122 \mathrm{~cm}^{-1}$. ${ }^{195} \mathrm{Pt}$-NMR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \delta-4243 \mathrm{ppm}$. In another experiment carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and using a ${ }^{\dagger} \mathrm{BuBr} / \mathrm{Pt}$ molar ratio of 2.7 at r.t., a 0.13 M solution of cis$\mathrm{PtCl}_{2}(\mathrm{CO})_{2}$ was rapidly (about 10 min) converted into the corresponding bromide, the latter being recovered by precipitation with heptane (75.5% yield).

4.7.3. From PtBr_{2}

A suspension of $\operatorname{PtBr}_{2}(0.81 \mathrm{~g}, 2.28 \mathrm{mmol})$ in sym$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(75 \mathrm{ml})$ was pressurized in a glass autoclave with CO (6 atm). After 1 h stirring at r.t. the solid had disappeared. The mixture was heated at $60^{\circ} \mathrm{C}$ for 3 h and a yellow solution was obtained which was siphoned into a flask under N_{2} and concentrated under reduced pressure. An IR spectrum of the solution showed the bands at 2170 and $2130 \mathrm{~cm}^{-1}$ due to cis $-\mathrm{PtBr}_{2}(\mathrm{CO})_{2}$. The solution was treated with heptane $(100 \mathrm{ml})$ and the pale yellow product precipitated out. The suspension was stored at $-30^{\circ} \mathrm{C}$ for 2 days and then filtered. The solid was dried in vacuo ($0.70 \mathrm{~g}, 74.7 \%$ yield). The filtrate was evaporated to dryness and the residue, after addition of heptane (5 ml), was recovered by filtration and dried in vacuo ($0.16 \mathrm{~g}, 91.7 \%$ total yield). The product had correct elemental analysis $(\mathrm{Br}, \mathrm{Pt})$ and IR.

The same reaction carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t. and $p_{\mathrm{CO}} \sim 0.5 \mathrm{~atm}$ proceeded very slowly.

4.8. $\mathrm{cis}-\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$ (4)

A solution of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pd}_{2} \mathrm{Cl}_{6}\right](752 \mathrm{mg}, 0.83 \mathrm{mmol})$ in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, prepared as described above, was treated under CO with $\mathrm{AlCl}_{3}(219 \mathrm{mg}, 1.64 \mathrm{mmol})$. After 2 days stirring at r.t. the IR spectrum of the solution showed an intense band at $2166 \mathrm{~cm}^{-1}$ due to cis $-\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}$. The solution was treated with heptane $(120 \mathrm{ml})$ and cooled down to $-30^{\circ} \mathrm{C}$. The orange
compound was filtered and dried for a short time under a CO flux (76% yield). The product had correct elemental analysis (Cl, Pd) and IR [1d].

4.9. Crystal structure determinations

Due to the extreme sensitivity to moisture of the compounds, single crystals were selected under a protecting atmosphere of an accurately dried gas. The X-ray diffraction measurements were carried out by means of an ENRAF-Nonius-CAD4 diffractometer equipped with a graphite-monochromated $\mathrm{Ag}-K_{\alpha}$ radiation ($\lambda=0.56087 \AA$) for compound 2 at 203 K and with a Siemens P4 diffractometer equipped with a graphite-monochromated Mo- K_{α} radiation ($\lambda=$ $0.71073 \AA$) for compounds 3, 4, and $\mathbf{5}$ at r.t. $(T=293$ $\mathrm{K})$. The samples were sealed in glass capillaries under an inert atmosphere. The $\omega / 2 \theta$ scan mode was used for intensity data collection, a redundant set of data allowing diffraction symmetry and reliability of the absorption correction procedure to be checked. Three standard reflections were measured every 97 measurements to check sample decay. The intensities were corrected for Lorentz and polarisation effects and for absorption by means of a ψ-scan method [17]. The intensities of compound $\mathbf{3}$ were also corrected for decay [18]. The structure solutions were obtained by means of the Patterson method and the refinements, based on full-matrix least-squares on F^{2}, were done by means of the shelx-97 programme [19].

4.9.1. Crystal structure of $\mathbf{2}$

Orange needle-like single crystals were obtained by cooling $\left(0^{\circ} \mathrm{C}\right)$ a solution of $\mathbf{2}$ in dichloroethane. Several crystals were tested, the best results being obtained with a sample of dimensions $0.52 \times 0.04 \times 0.04 \mathrm{~mm}$. The cell parameters were calculated from the setting angles of 25 reflections having $6.0^{\circ}<\theta<10.0^{\circ}$. They are listed, together with some other structural parameters in Table 5. A total of 811 independent reflections were measured $\left(1.4^{\circ}<\theta<21.0^{\circ}\right)$. The structure solution was obtained in the space group $P 4_{2}$, see Table 5 .

4.9.2. Crystal structure of $\mathbf{3}$

Colourless prismatic crystals of $\mathbf{3}$, obtained by sublimation under reduced pressure (about $10^{-2} \mathrm{mmHg}$) in a sealed ampoule in the temperature gradient $100-$ $30^{\circ} \mathrm{C}$, were mounted in glass capillaries under an argon atmosphere. The crystal used for structure solution had dimensions $0.23 \times 0.18 \times 0.06 \mathrm{~mm}$. The cell parameters, calculated from the setting angles of 25 reflections having $5.0^{\circ}<\theta<12.0^{\circ}$, are listed in Table 5, together with some other structural details. A total of 2292 independent reflections were measured between $2.9^{\circ}<$ $\theta<25.0^{\circ}$. During data collection, a 15% decay of the standard reflections was observed, while the crystal

Table 5
Crystal data and structure refinement ${ }^{\text {a }}$

Compound	2	3	4	5
Empirical formula	$\mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{O}_{2} \mathrm{Pt}_{2}$	$\mathrm{C}_{2} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Pt}$	$\mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{O}_{2} \mathrm{Pd}_{2}$	$\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{Br}_{3} \mathrm{NOPt}$
Formula weight	588.01	410.93	410.67	705.29
Temperature (K)	203(2)	293(2)	293(2)	293(2)
Wavelength (A)	0.56087	0.71073	0.71073	0.71073
Crystal system, space group	Tetragonal, $P 4_{2}$ (no. 77)	Triclinic, $P \overline{1}$ (no. 2)	Monoclinic, $P 2_{1} / n$ (no. 14)	Monoclinic, $P 2_{1 / n} / n$ no. 14)
Unit cell dimensions				
$a(\mathrm{~A})$	11.183(3)	7.126(1)	10.451(1)	14.992(2)
$b(\AA)$	11.183(3)	7.315(1)	6.649(1)	9.158(1)
$c(\AA)$	3.525(2)	13.525(3)	13.032(1)	18.642(2)
$\alpha\left({ }^{\circ}\right)$	-	75.31(1)	-	-
$\beta\left({ }^{\circ}\right)$	-	78.12(1)	97.83(1)	106.93(1)
$\gamma\left({ }^{\circ}\right)$	-	75.04(1)	-	-
Volume (A^{3})	440.8(3)	651.4(2)	897.1(2)	2448.6(5)
Z	2	4	4	4
$\rho_{\text {calc }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	4.430	4.190	3.040	1.913
$\mu\left(\mathrm{mm}^{-1}\right)$	17.864	33.706	4.532	10.630
Data/restraints/parameters	811/33/47	2292/0/128	1908/0/91	4267/0/209
$R\left(F_{\mathrm{o}}\right)^{\text {a }}$ [$\left.I>2 \sigma(I)\right]$	0.0368	0.0738	0.0468	0.0529
$R w\left(F_{\mathrm{o}}^{2}\right)^{\mathrm{a}}[I>2 \sigma(I)]$	0.0462	0.1611	0.0850	0.1078

became yellow-orange. Three collections on three different specimens gave the same results. The structure solution was obtained in the space group $P \overline{1}$. The final refinement cycles gave the reliability factors listed in Table 5.

4.9.3. Crystal structure of $\mathbf{4}$

Red-orange needle-like single crystals were obtained by cooling $\left(-40^{\circ} \mathrm{C}\right)$ a solution of $\mathbf{4}$ in thionyl chloride/ heptane (1:3). One of them, of dimensions $0.51 \times$ $0.10 \times 0.05 \mathrm{~mm}$ was mounted on the diffractometer and the cell parameters were calculated from the setting angles of 23 reflections having $5.3^{\circ}<\theta<12.5^{\circ}$. Other structural details are in Table 5. The intensities of 1908 independent reflections with $2.35^{\circ}<\theta<30.0^{\circ}$ were collected. The structure solution was obtained in the space group $P 2_{1}$. The final refinement cycles gave the reliability factors listed in Table 5.

4.9.4. Crystal structure of $\mathbf{5}$

A fragment of a yellow needle-like crystal of 5 of dimensions $0.88 \times 0.18 \times 0.08 \mathrm{~mm}$ was mounted on the diffractometer and the cell parameters were calculated from the setting angles of 27 reflections having $5.4^{\circ}<$ $\theta<12.45^{\circ}$. The lattice parameters, together with some other structural details, are listed in Table 5. The intensities of 4267 independent reflections with $2.07^{\circ}<$ $\theta<25.01^{\circ}$ were collected. The structure solution was obtained in the space group $P 2_{1} / n$. The final refinement cycles gave the reliability factors listed in Table 5.

5. Supplementary material

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC no. 151361 for compound 2, CCDC no. 151362 for compound 3, CCDC no. 151363 for compound 4 and CCDC no. 151364 for compound 5 . Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: + 44-1223-336033; e-mail: deposit@ccdc.cam. ac.uk or http://www.ccdc.cam.ac.uk).

Acknowledgements

The authors wish to thank the Consiglio Nazionale delle Ricerche (C.N.R., Rome), Progetto Finalizzato Materiali Speciali per Tecnologie Avanzate II, and e della Ricerca Scientifica e Tecnologica (MURST), Progetti di Rilevante Interesse Nazionale 1998-9, for financial support and Chimet S.p.A., I-52041 Badia al Pino, Arezzo, Italy, for a loan of palladium and platinum.

References

[1] (a) L. Malatesta, L. Naldini, Gazz. Chim. Ital. 90 (1960) 1505.
(b) J. Browning, P.L. Goggin, R.J. Goodfellow, M.G. Norton, A.J.M. Rattray, B.F. Taylor, J. Mink, J. Chem. Soc. Dalton Trans. (1977) 2061. (c) D. Belli Dell'Amico, F. Calderazzo, G.

Dell'Amico, Gazz. Chim. Ital. 107 (1977) 101. (d) F. Calderazzo, D. Belli Dell'Amico, Inorg. Chem. 20 (1981) 1310. (e) D. Belli Dell'Amico, F. Calderazzo, N. Zandonà, Inorg. Chem. 23 (1984) 137. (f) D. Belli Dell'Amico, F. Calderazzo, C.A. Veracini, N. Zandonà, Inorg. Chem. 23 (1984) 3030. (g) B.P. Andreini, D. Belli Dell'Amico, F. Calderazzo, M.G. Venturi, G. Pelizzi, A. Segre, J. Organometal. Chem. 354 (1988) 357. (h) B.P. Andreini, D. Belli Dell'Amico, F. Calderazzo, M.G. Venturi, J. Organometal. Chem. 354 (1988) 369. (i) B.P. Andreini, D. Belli Dell' Amico, F. Calderazzo, N. Pasqualetti, Inorg. Syn. 29 (1992) 188. (j) F. Bagnoli, D. Belli Dell'Amico, F. Calderazzo, U. Englert, F. Marchetti, G.E. Herberich, N. Pasqualetti, S. Ramello, J. Chem. Soc., Dalton Trans. (1996) 4317.
[2] D. Belli Dell' Amico, F. Calderazzo, Pure Appl. Chem. 58 (1986) 561 (based on: F. Calderazzo, invited session main lecture delivered at the 11th International Conference on Organometallic Chemistry, Vienna, Sept. 8-13, 1985).
[3] (a) P.M. Maitlis, The Organic Chemistry of Palladium, Vol.1, Academic Press, New York, 1971. (b) F.R. Harthley (Ed.), Chemistry of the Platinum Metals, Elsevier, Amsterdam, 1991. (c) J.P. Collman, L.S. Hegedus, J.R. Norton, R.G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987. (d) J. Tsuji, Palladium Reagents and Catalysts, J. Wiley, New York, 1996. (e) F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th ed., J. Wiley, New York, 1999.
[4] (a) P. Schützenberger, Bull. Soc. Chim. Fr. 10 (1868) 188. (b) P. Schützenberger, Compt. Rend. 70 (1870) 1134.
[5] D. Belli Dell'Amico, F. Calderazzo, F. Marchetti, S. Ramello, Angew. Chem. Int. Ed. Engl. 35 (1996) 1331.
[6] R.K. Harris, B.E. Mann, NMR and the Periodic Table, Academic Press, London, 1978.
[7] I. Leden, J. Chatt, J. Chem. Soc. (1995) 2936.
[8] K.B. Harvey, G.B. Porter, Introduction to Physical Inorganic Chemistry, Addison-Wesley, 1963 Reading mass.
[9] F.R. Hartley, Nature Phys. Sci. 236 (1972) 75; Chem. Abstr. 76 (1972) 158603c.
[10] D.R. Lide, Handbook of Chemistry and Physics, 73rd ed., CRC, Boca Raton, FL, 1992-1993.
[11] D.R. Russell, P.A. Tucker, S. Wilson, J. Organomet. Chem. 104 (1976) 387.
[12] R.D. Shannon, Acta Crystallogr. Sect. A 32 (1976) 751.
[13] N.M. Kostic, R.F. Fenske, Inorg. Chem. 22 (1983) 666.
[14] (a) I. Antes, S. Dapprich, G. Frenking, P. Schwerdtfeger, Inorg. Chem. 35 (1996) 2089. (b) A.S. Goldman, K. Krogh-Jespersen, Acta Crystallogr. 118 (1996) 12159.
[15] (a) P.K. Hurlburt, J.J. Rack, J.S. Luck, S.F. Dec, J.D. Webb, O.P. Anderson, S.H. Strauss, Acta Crystallogr. 116 (1994) 10003. (b) A.J. Lupinetti, G. Frenking, S.H. Strauss, Progr. Inorg. Chem.(in press) [we thank Professor Strauss for sending a copy of the manuscript prior to publication]. (c) F. Aubke, C. Wang, Coord. Chem. Rev. 137 (1994) 483. (d) H. Willner, F. Aubke, Angew. Chem. Int. Ed. Engl. 36 (1997) 2402. (e) E. Bernhardt, H. Willner, V. Jonas, W. Thiel, F. Aubke, Angew. Chem. Int. Ed. Engl. 39 (2000) 168.
[16] D. Belli Dell' Amico, F. Calderazzo, C. Ciofi, F. Garbassi, L. Grande, G. Masciarelli, J. Cluster Sci. 69 (1998) 473.
[17] C.T. North, C. Phillips, F.S. Mathews, Acta Crystallogr. Sect. A 24 (1968) 351.
[18] (a) Xscans, X-ray Single Crystal Analysis System, Report 2.1, Siemens Analytical X-ray Instruments Inc., Madison, WI, USA, 1994. (b) ENRAF-Nonius SDPV.5.0, 1989.
[19] G.M. Sheldrick, Shelxtl-Plus, Rel. 5.1, Siemens Analytical X-Ray Instruments Inc, Madison, WI, USA, 1997.

[^0]: * Corresponding author. Fax: + 39-50-20237.

 E-mail address: bell@dcci.unipi.it (D. Belli Dell'Amico).
 ${ }^{1}$ Present address: Lucchini C.R.S., viale della Resistenza 2, I-57025 Piombino, Livorno, Italy.
 ${ }^{2}$ Present address: Enichem-IGD, Via G. Fauser 4, I-28100 Novara, Italy.

[^1]: ${ }^{\text {a }}$ Symmetry transformations used to generate equivalent atoms: $\prime^{\prime}=-x+2,-y+1, z$.

